
JOURNAL OF APPROXIMATION THEORY 59, 170-201 (1989)

The Optimal L1 Problem for Generalized
Polynomial Monosplines and a Related Problem

R. B. BARRAR AND H. L. LOEB

Mathematics Department, University of Oregon, Eugene, Oregon 97403, U.S.A.

Communicated by Oved Shisha

Received June 16, 1988; revised August 22, 1988

1. INTRODUCTION

In this paper we investigate generalized polynomial monosplines with
fixed multiple knots and free multiple zeros which have minimal L1-norm.
We call this subject the Optimal L 1 Problem for Generalized Polynomial
Monosplines. We prove that there exists a unique monospline of this type.
Related to this problem is a problem for monosplines with free knots which
have a set of prescribed zeros. Also in this case the existence of a unique
solution is shown. In a future paper, we expect to utilize these results to
solve the Extended Optimal L] Problem for Generalized Polynomial
Monosplines, i.e., with both free knots and zeros.

Some of the early work in this area was accomplished by Karlin and
Pinkus [8, 9], Jetter and Lange [6, 7], and Strauss [12, 13]. For
Extended Cheybeshev Systems the Extended Optimal L 1 Problem was
solved by Bojanov, et al. [4]. Strauss [13a] dealt with L] approximation
for polynomial monosplines with fixed knots of multiplicity two.
Michelli [1 Oa] and Barrar and Loeb [1 a] investigated L] approximation
for weak Chebyshev systems.

Related to the Optimal L] Problem for Generalized Polynomial
Monosplines is a problem which can either be thought of as a generaliza­
tion of the Fundamental Theorem of Algebra for monosplines or as a
Generalized Gaussian Quadrature Formula. The close relationship between
these problems, in the case of an Extended Chebyshev System was
emphasized by Braess [5, Chapter I, Sect. 4; Chapter VIII, Sect. 4].

We use a variational approach to show the existence of a solution to the
optimal L 1 problem (Theorem 1). We then use the relationship between
the problems to demonstrate the uniqueness of the solution (Theorem 3).

Schoenberg was the first to state the Fundamental Theorem of Algebra
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for Monosplines. Karlin and Schumaker proved the existence and unique­
ness of monosplines with simple knots and prescribed multiple zeros.
Micchelli solved the existence and uniqueness problem for multiple knots
and simple zeros. (See Michelli [10] for references). Barrar and Loeb [1],
proved the uniqueness theorem for the case of multiple zeros and knots of
odd multiplicity. They also established the existence in more general cases
than those treated by Karlin and Schumaker or Micchelli. Recently
Zhensykbaev [14] by using the Brouwer Fixed Point Theorem has given
a necessary and sufficient condition for the existence of a solution to the
problem with multiple zeros and knots of odd multiplicity.

In this paper we establish in the general case of multiple zeros and
arbitrary multiplicities of the knots necessary and sufficient conditions that
a solution exists to the Fundamental Theorem of Algebra problem and
prove that at most one solution exists.

We will discuss two problems.

TYPE I PROBLEM

The problem is to determine among the set of monosplines with given
fixed knots which have a certain number of (free) zeros one with minimal
L,-norm.

Find zeros Xi' i = 1, ..., r + 1,

O=Xo<X, <X2 < ... <xr<xr+' = 1

with given multiplicities mi, when we are given knots Vi' i = 0, 1, ..., S,

with multiplicities n i such that if

G(X)= ±(-I)gif+
1

cPm(x,v)dv,
i= 0 v,

go=O, gi=gi-,+(ni+O"J, i=I, ...,s,

with O"i=O or +1 (to be specified later, see, e.g., Eq. (18)) then

s ni-1

F(x*, x) = G(x) + L L bij(x*) cP;,,(x, Vi)'
i=O j~O

x*=(x"x2 , ...,xr) (1)

has zeros of order mi at the Xi> and HIF(x*, x)1 dx is minimum.
Related to this is

640/59/2-4
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TYPE II PROBLEM

The problem is to determine a unique monospline with given zeros.
Find distinct knots t i , i=O, ..., r, with multiplicity iii

(and corresponding constants aij) such that

r ni- 1

M(y)=G(y)+ L L aijf/J{..(y, t i )

i=O j=O

has zeros of order rn i at given Yi, i = I, ..., s + 1, rno= m - iio

0= Yo < Yt ... < Ys < Ys+ 1 = 1

with

G(y) = ±(-l)g, f'+1 f/Jm(y, t) dt,
;=0 II

i.e., here a i = 1, i = 1, ... , r.
We have used the following notation in the statement of these two types

of problems:

(X-V):-l
f/Jm(x,v)= (m-I)! '

As emphasized by Braess in his book [5], in the context of Extended
Chebyshev Systems, these problems are closely related.

We now show that these problems can be broken up into simpler
problems, which we call indecomposable problems. We give the precise
definitions below. We begin with some general remarks applicable to both
types of problems.

If F(x) is piecewise, between the knots Vi of multiplicity n i , an mth degree
polynomial with leading coefficient ±A, A > 0, we define for the purpose of
the statement of the Budan-Fourier Theorem

a.={1, 0
if ( _l)n,+ 1 sgn D"'. F(v,) = sgn D: F(v,) # 0

if (-1 t' sgn D"'. F(v,) = sgn D: F(v i) # O.

We call such an F(x) a generalized monospline. Thus both the F(x*, x) of

1 An important special case is when ii, = O. Then a" = 0 for all j.
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problems of Type I and the M(y) of problems of Type II are special cases.
We will use the same notation for the knots and zeros of F(x) as that used
for F(x*, x) in problems of Type I. From arguments used in [10, Prop. 1]
and [11, Theorem 8.43], we have

LEMMA 1. (Budan-Fourier Theorem). Z(a.b)(F) ~ m + L (n; + 0';) ­

S + LF(a) - S + RF(b) where the sum is over all knots contained in the open
interval (a, b). The following notation is used:

Z(a,bj(F) is the total number of zeros of F in the interval (a, b), using the
zero convention of [11, Definition 8.42].

Also,

RF(a) = [F(a+), -D + F(a), ..., (_1)m D': F(a)]

LF(b) = [F(b - ), D _ F(b), ..., D~ F(b)].

Thus we say F(x) of Lemma 1 has a full set of zeros if
r+l
L mj=m+ L (ni+O';)=N j. (3)
j~O i~ 1

We also have the following Corollary of Lemma (see Micchelli [10,
Cor. 2] and Schumaker [11, Theorem 8.44]).

COROLLARY 1. If F(x) of Lemma 1 has a full set of zeros, with the zeros
arranged as o=x j~X2~ ... ~XN1 = 1, then for each knot Vi

i= 1, ..., s, (4)

where I; = L;~ j (nj + 0';),10 = 0. Both sides of (4) are inequalities if n; < m,
and if a zero occurs at v; it is at most of order m - n;. Moreover if n; = m
and 0'; = 1, then

(4 )'

It is possible to give an extension of this corollary that will be useful for
us later, namely:

COROLLARY 2. Under the assumptions of Corollary 1 if at least one of
the following two conditions hold

rl + 1 SI-l

L mi=m+ L (n;+O';)+I, mr1+j+ns1~m+l, O'sl=1 (5)
;~O ;~ 1

rt Sl- 1

L m;=nS1 + L (n;+O';), mYJ+l+n'l~m+l, O'sl=1 (6)
i=O i= I
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Proof If in the sequence X1:s;; X2 :S;; ••• :s;; XNp X" + 1 appears in the
placesj+ 1, j+2, ... ,j+mrl +l :

(5)~ j+m,,+l =m+151 _ 1+ 1,

(6)~j+l=lsl'

With IJ'I=I,(m+I,,_I+l)-I,,+I=m+l-nsl , but since m,,+l~

m + 1 - n51 this implies x1'1 = Xm + 1'1 -I + 1 in both cases. Hence by (4), (4)"
follows. I

LEMMA 2. For a given a E (0, 1), and a given pair of multiplicities
m" + 1 + n 51 ~ m + 1, consider the class of all generalized monosplines with a
zero of multiplicity m rl + 1 at a and a knot of multiplicity nSI at a, and with
a51 = 1. (We call such a point a, a break point).

For any F in this class with a full set of zeros, let F1:= F on
[0, ll], F2 : = F on [a, 1]. Then if q is the multiplicity of the zero of F1 at a,
and p is the multiplicity of the zero of F2 at a, either I or II holds.

I. (a) q=m,,+1-1,p=m-nS!"

(b) F1 has a full set of zeros on [0, a] and its parameters satisfy

q + 1 51-1

L m i-l=m+ L (ni+aJ
i=O i= 1

(7)

(c) F2 has a full set of zeros on [a, 1] and its parameters satisfy

r+ 1 s

(m-n 51 )+ L mi=m+ L (ni+aJ
i=q +2 i=sl + 1

(8 )'

II. (a) q=m-n 51 ,p=m,,+I-1.

(b) F1 has a full set of zeros on [0, a] and its parameters satisfy

'1 51- 1

L mi+(m-nSI)=m+ L (ni+aJ.
i= 1

(8)

(c) F2 has a full set of zeros in [a, 1] and its parameters satisfy

r + 1 s

(m'l+ 1 -1) + L mi=m + L (n i+ aJ
i =" + 2 i = 51 + 1

(7)'
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Conversely consider any pair F 1 defined on [0, a], F2 defined on [a, 1],
which satisfy either I or II, and let

on [0, a]

on [a, 1],
(9)

where F1 + L;~I bj(x-a)";-j=O, x~a. Then F is a member of the class
and has a full set of zeros over [0, 1].

Proof The Budan~Fourier theorem implies:

For [0, a]

rt 51 - I

L m j ~ L (n j+ O"j) + (m - S+ LF(a))
j=O j= 1

and for [a, 1]

r+l s

L mj~ L (nj+O"j)+(m-S+RF(a)).
i=r1+2 i=Sl+l

Combining we get

(10)

(11 )

r+ 1

L mj ~ L (n j+ O"J + (m - S+ LF(a) - S+ RF(a)) + m. (12)
i # '1 + 1 i :# .'''1
j~O j~ 1

On the other hand, since F has a full set of zeros and O"q = 1, we have (see
Schumaker [11, Formula 8.62])

Ya = S+ LF(a) + S+ RF(a) + ns, + I-m rl + 1 =0

or

m - S+ LF(a) - S+ RF(a) = (n SI + 1) - m" + I"

By (3) and (13), (12) is an equality and so are (to) and (11).
We can also write (13) as

(13 )

By assumption m" + 1 - 1~ m - ns ,' Since the zero in [0, 1] is of order
m r1 + 1, we need either q or p to be at least of order m" + 1 - 1. We consider
three cases.

Case 1. q = m - nSI ' Then m r1 + 1 - 1~ m - ns , implies (by considering
> and = separately)
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s+ LF(a) ~ m - n'l

S + RF(a) ~ (m rt + 1 - 1).

(14 )

Combined with (13)' this implies all the equations in (14) are equalities.
Since (10) and (11) are equalities, this proves II, including Eqs. (7)'
and (8).

Case 2. q < m - nsi ' This is impossible for then the zero in [0, 1] is of
order q<m rl + 1 •

Case 3. q> m - nSI' Since the knot is of order n'I' P = m - n'I' and
hence

S+ RF(a) ~ m - n
SI

(15)

S + LF(a) ~ m rt + 1 - 1.

Combined with (13)' this implies all the equations in (15) are equalities.
Since (10) and (11) are equalities this proves I, including Eqs. (7) and (8)'.

This completes the proof of the first part of the lemma. For the second
part:

Case 1. Conversely if F1 and F2 satisfy the stated conditions II, then F
defined by (9) satisfies (3) because if er sl = 1, then it follows from (14) (with
all equalities) that (-I)qsgnD~Fda)=(-I)p+lsgnD~F2(a),which
implies the zero at a is of order p + 1.

Case 2. Conversely, if F1 and F2 satisfy the stated conditions I, then F
defined by (9) satisfies (3) because if ersl = 1, then it follows from (15) (with
all equalities) that -sgnD~ Fl(a)=sgnD~F2(a), which implies the zero
is of order q + 1.

We define an indecomposable problem of Type II as a problem with a
full set of zeros, i.e., it satisfies (16), for some r and of,

s + 1 j

L mi=m+ L (iij+erJ
i~O j~ 1

(16 )

with all erj = 1, and with all iij < m, and if a knot with multiplicity ii k and
a zero with multiplicity mg coalesce then mg + iik ~ m.
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We define an indecomposable problem of Type I as a problem with a full
set of zeros, i.e., it satisfies (17), for some rand s,

with all O'i = O. I

i+ 1 S

L mj=m+ L (ni+O';)
j~O i~ 1

(17)

LEMMA 3. Any problem of Type II (i.e., all O'i = 1) can be decomposed
into h +1 indecomposable problems with break points at h zeros
j\, k = 1, ..., h; (h and the particular zeros, depending on the problem), such
that any solution of the original problem is obtained by piecing together
solutions of the indecomposable problems. Thus the original problem has a
solution if and only if the individual indecomposable problems have a solution.

Proof It follows from Lemma 2 and Corollary 2 that a necessary and
sufficient condition for a knot or zero to be a break point is that Eqs. (5)
or (6) applied to problems of Type II hold. It follows from Lemma 2 that
if a knot and zero coalesce at a point a with their sum ~m + 1, that point
is a break point. A special case is when nk = m, for then (4)' implies that
t k is also a zero and hence a break point.

Thus if for every set of parameters such that

51 + 1 r, - I

L mi=m+ L (11;+1)+1,
i~O i~ 1

or

51 rt - 1

L mi =l1rl + L (11;+ 1),
;~O i~ 1

(5 )"

(6 )"

if we choose y SI + 1 as a break point, Lemma 3 follows. I

LEMMA 4. Consider the following 1~1 transformation of problems of
Type II into a subset of problems of Type I:

For l~i~s, l~j~r:

v= 1- y,
ni+O'i=mi,
mj =l1j' + 1,

v;= 1- Yi',

x = 1 - t, i' = s + 1 - i, j' = r + 1- j,
with O'i = 1 at break points Yi' O'i =°otherwise.

(also for i = 0, s + 1; j = 0, r + 1)

mr+1 =110 ; nr+l=mo; no=ms+l ; mO=ns+1 ;

mo+no=mo+no=m=ns+1 +mr+1=l1r + 1 +ms+ l . (18)
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A. If the problem of Type II satisfies (16), the problem of Type I
induced by (18) satisfies (17).

B. If a zero y SI + I in a problem of Type II is a break point, the knot
vS _ SI is a break point in the corresponding problem of Type I.

C. Indecomposable problems go into indecomposable problems in the
sense that if the solution of the problem of Type II is obtained by piecing
together h + 1 solutions of indecomposable problems, the solution of the
corresponding problem of Type I is obtained by piecing together h + 1 solu­
tions of indecomposable problems. In particular, the solution to the problem
of Type I exists if and only if the h + 1 individual indecomposable problems
have solutions.

Proof of A.

s + I s

L m;= L (nj+O"j)+(m-mr+1)+m-m O ;

;~o ;~ 1

m + L (nj + 1) = m + L m j
j~ 1 j~ 1

so A follows. I

Proof of B. Say, for example, Eq. (5)" is satisfied, i.e., y SI + I is a break
point, satisfying (5)". Then m'l+1+nrl=ns_sl+mr+l_rl~m+1 and
O"S-SI = 1, thus

SI + 1

L m;= L (n;+O";)+(m-mr+Il
i=O i=s-Sl

rt -- 1 r

m+ L (n;+ 1)+ 1=m+ L mj + 1.
j~ I j~(r-rll+2

Hence

r+ I

(m-n s_ sl )+ L mj=m+ L (n;+O"J
j ~ (r - 't) + 2 ; ~ (s - SI) + 1

Thus (8)' holds and since A holds also (7) of Lemma 2 holds. Hence by
Lemma 2, VS -

SI
is a break point. A similar argument applies if Eq. (6)" is

satisfied. I
Proof of C. Since no other knots V; of the problem of Type I except

those described in B have been assigned 0";= 1, and since by Lemma 2 at
each break point V

S
-

SI
we can break the original problem of Type I into

two problems both with a full set of zeros, it follows that indecomposable
problems go into indecomposable problems. I
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It follows from Lemmas 3 and 4 that we may restrict our discussion to
solutions of indecomposable problems. To simplify the discussion and
without loss of generality let us assume that the indecomposable problem
involves the interval [0, 1]; i.e., let us imagine that the original problems
(1), (17) (with all O"i = 0) and (2), (16) are indecomposable problems. We
introduce the following notation: we let YI ~ Y2 ~ .. , ~YN be the sequence
obtained from YI, ..., Yn 1 by repeating Yi, mi times, i = 1, ..., s + 1, and let
i 1 ~ i2~ ... ~ iN be the sequence obtained from to, t l , ..., t r by repeating to,
.no times and ti , ni + 1 times, i= 1, ... , r. We let XI ~X2~ ... ~XN be
the sequence obtained from XI,,,,,X r + 1 by repeating Xi' mi times
(i = 1, , r + 1), and let v1 ~ v2 ~ ... ~ VN be the sequence obtained from
Vo, VI' , V, by repeating Vi' ni times, i=O, ..., s. We consider furthermore
two sets of points. For given Yi, 1, ..., N, let D be the set of all ( defined as
above such that

(19)

when the indices are meaningful.
For given Vi' i = 1, ... , N, let D be the set of all Xi defined as above such

that

(20)

when the indices are meaningful.
Since we are dealing with indecomposable problems, it follows from

Corollary 1 (applied to M(y)) that if a problem of Type II is indecom­
posable and has a solution, the corresponding ii belong to D; i.e., D is a
non-empty open set. Moreover it follows from Corollary 1 that if F(x*, x)
has a full set of zeros then the corresponding Xi must belong to the closure
of D. Thus if a problem of Type I has a solution, the corresponding Xi will
belong to the closure of D.

The map (18) takes the set D associated with an indecomposable
problem of Type II, onto the corresponding set D associated with the
corresponding indecomposable problem of Type I. A proper problem of
Type II is one such that' the sets D, associated with the indecomposable
problems that the original problem can be decomposed into, are all non­
empty. As noted above for a problem of Type II to have a solution it is
necessary that it be a proper problem. Later we show it is sufficient.

We will restrict our investigation from now on to what we define as
well-posed L 1 problems. They are defined as problems of Type I, obtained
from proper problems of Type II by the transformation (18).

THEOREM 1. Every well-posed L I problem has at least one solution.

Proof By our previous remarks it is sufficient to prove this result for



180 BARRAR AND LOEB

indecomposable problems. Thus we will prove the result for Eq. (l), with
all a i = 0, under the proviso that D is non-empty.

Let

Then

g;=g;--l +n i ,

. {i= 0··· S
Ug;+i(X) = <P/n-l(X, Vi) '_ '

) -1 ..., n;,

i = 1, ... , s.

(21 )

We define <Pm(~::::D~:) as does Micchelli [10, Eq. (16)], and note that
for points in D, <Pm(~::·:~:»O (see Schumaker [11, Theorem 4.78]).

Set

UN+1(.X)= i (-l)g;f't, <Pm(x,v)dv=G(x). (22)
i=O ('/

where

U(UI~"UN~N+l)
XI · .. XNX

F(x*,x)= ;

U(~l' "~N)
XI"'X N

N

= G(x) + L bi(x*) Ui(x)
;=1

s nj- 1

=G(X)+ L L bij<P/n(x, Vi)'
;=0 j=O

U(u I ... UN) (X 1 , ... , XN) {-., }_ _ =<Pm _ _ =det Ui(XJ;I,J=l, ... ,N
x I ... X N V I' ... , V N

(23)

with the usual convention in case of coincidence among the x,.'s (see
Schumaker [11, Sect. 4.10]). Let

Q(x*) = J: IF(x*, x)1 dx.

Then we prove the following:

THEOREM 1'. minx' E D Q(x*) is attained for some x* E D.
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THEOREM 2'. At the minimum of Q(x*), x* = (Xl' ..., x r), we have

O=XO<X I <X2 < ... <Xr<Xr+ 1 = 1.

Theorem 1 will then follow. I
We prove Theorem I' and Theorem 2' below.

181

THEOREM 2. If a well-posed L I problem has a solution with zeros
0<x 1 < ... <xr<xr+ 1 = 1, the proper problem of Type II that it comes
from (by the transformation (18)), has a solution with knots tj =
l-xr + 1 _ j ,j= 1 ···r.

Proof Once again it is sufficient to prove this result for indecom­
posable problems. Thus we assume that F(x*, x) of Eq. (1), with all a, = 0,
is a minimum for a Type I problem, and that D is non-empty. Assuming
Theorem I' and Theorem 2' proved, and that Q(x*) attains its minimum
at x* = (x I' ... , x r), 0 < Xl < ... < Xr < 1 in D, then we assert that there are
constants iij and iiij such that

1 mr+l-1 r mj-2I (sgnF)uv(x)dx= L iiju{(l) + L L iiiju{(x;),
o j~O i~1 j~O

V= 1, ..., N

(24f

To establish this, first assume X k is a zero of order q, and a knot of order
w with q + w < m - 2. Then clearly

oQ(x*) II of
o = (sgnF);;-dx=O

Xk 0 uXk
(25)'

and

of. I· b·' f ( );;- IS a mear com matIOn 0 U i x ,
uXk

i= 1 ···N (25 )"

d
j

of I {O'-dj;;-(x*,x) = 0,
X UXk X~XI #0,

j=O···m,-I, l#k

j=O·· ·m,-2, l=k

j=mk-l, l=k

(25)m

(see Remark 1 of [3]).
For the general case where we can only assert w+ q~ m, we will

demonstrate that there still exists a function, call it Fk> that satisfies (25)'.
(25)" and (25)m. (See Lemmas 12 and 13.)

2 If m, = 1, then au = 0 for all j.
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Since we are in D, we are assured of the existence of ai' aij such that (24)
holds, but with the second sum being L;~ 1L~o 1 aiju{(xJ However, it
follows if (25)', (25)", and (25)'" hold for some k that ak,mk 1 = O. Hence
(24) follows.

Finally, performing the transformation (18) on the U v (x), v= 1 . ,. N,
Eq. (24) is equivalent to the statement that the M(y) of Eq. (2) has a zero
of order mi , at Yi' i= 1, ..., s+ 1. I

THEOREM 3. Every well-posed L I decomposable problem and every
proper problem of Type II have one and only one solution.

Proof Once again it is sufficient to prove the result for indecomposable
problems. We have already proved the existence of solutions. We now
establish uniqueness. In the proof of Theorem 2, we showed that if the
indecomposable L 1 problem has a solution, then the quadrature formula
(24) with points Xl < x 2 ... < X r follows, and that (24) is equivalent to the
solution of the corresponding problem of Type II. Hence, if either the L I

indecomposable problem or the indecomposable problem of Type II had
two solutions this would imply that the quadrature formula (24) had a
second solution with points X'I < x~ < '" < x~.

If we apply the Gaussian transform to the functions ui(x), i = 1, ..., N, we
obtain Ui(B, x), i= 1, ... , N, which is an Extended Chebyshev System. If we
also use the implicit function theorem on (24) (with parameters ai' aij' and
Xl' .•• , x r ) the Jacobian is n;~ I ai. mi - 2 cP m (~::: :~) which is non-zero, since
first we are in D and second if any of the ai•mi _ 2 = 0,3 it would follow from
the Budan-Fourier Theorem that the corresponding M(y) would not have
enough zeros. Thus if (24) had two different solutions Xl < ... < X r and
x~ < x~ < ... < x~, it would follow that the resulting Generalized Gaussian
Quadrature Formula for the U,(B, x), B > 0, had two sets of canonical
points, which is a contradiction (see Braess [5, Chap. I, 4.2] and Bojanov
et al. [4]). This establishes uniqueness. I

Proof of Theorem I'. The proof of Theorem I' is long and technical.
The position of the knots Vi' i= I, ..., s, are fixed. We consider Q(x*) for
x*=(x1, ... ,Xr)ED. We show that if x=(xI"""X'r) belongs to the
boundary of D, then Q(x) is not the minimum of Q(x*). To avoid some
cumbersome notation we will only consider two cases, and we will restrict
ourselves to the situation where all mi are even, thus F~ O. It will be clear
that the general situation can be treated by our method. We consider Xk to
be a zero of multiplicity mk> Dr to be a knot of multiplicity nl , with
m k + nr ~ m + I, and Xk -+ ur' In Lemmas 5, 6 and 7 we treat the case
wherexk> Dr, and in Lemmas 8, 9, to, and II we treat the case Xk < VI'

31f m i = I, replace iii,m,_ 2 by ±2,
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( q )

f--l~

(

Xi' ...• Xtt) =(X1•...• Xli' -1 .a +E•.......• a + E •XlI'+q •............• XtI)

Vi.··· • Vtt Vi.···· ........•. ,V'f -1' a, ............• a • V'f+P •.. < • VtI

I~(--- P---?)

FIG. 1. Overlap / at E = O.

We begin with

DEFINITION 1. (See Fig. 1). Assume F(x*, x) has a zero of multiplicity
qat Xb with x<T+ i = Xb i = 0, 1, ..., q - 1. Further assume vf = a is a knot of
multiplicity p with vT+ j = vf = a, j = 0, ..., p - 1. We say this is an overlap I
at 1::=0 if a+q=T+I; i.e., if xk=a, then x,+j=vT+j=a,j=O, ...,I-1.
Further v,_ I < v, < vT+ p; x" _ I < X" < x<T+ q; 0 ~ I~ min(p, q). Note that if
l = 0, then even for I:: = 0, x* E D.

LEMMA 5. Assume, in D, that F(x*, x) has a zero of multiplicity q at
x k = a + 1::, and a knot of multiplicity p at vf = a, with overlap I at I:: = 0.
Keeping all other zeros (and, of course knots) fixed, then as a function of I::

(
Xl' ... , XN)

rpN= rpm - -
VI' ... , V N

= azl:: z+ higher order terms

az#O, z=/[(m+/)-(p+q)]~O.

Proof Since X" > VT+P_I, X" < V,,+m we conclude T + P-1 < a + m and
hence q +p - 1 < m + I. Thus z ~ 0 as stated.

If Mat rp N is the matrix of which rp N is the determinant then

T -1 p u

(~ ;D
w~T-l+p+u=a-l+q+v=N

The elements of A, C, E, K are constants. The elements of B are polyno­
mials in 1::; and the elements of L are
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L~#= (( _1)#-1 B;-(H!i)+I),

. {Bil}!,
B

J* = 1,
0,

(l = 1, ..., q

}~1

}=o
}<O.

fJ = 1, ... , p.

Let the columns of A be aI' ... , aT _ I' those of L 11' ..., I p , etc. Using
Laplace's expansion on the first ((J - 1) + q rows we find

x det of complement

(since (J - 1+ q = r - 1+ I, if w < I, then f) > r, which is impossible). Using
Laplace's expansion again, this time on the last w columns, with L(~~::::~:)

a w x w subdeterminant of L (w ~ l)

d (
ail' ... , a ill , 0, ..., 0) " (hI' ...,hw )et = L. L
bil , ... , bi/J,Ii!' ...,jj, hl<h2<·· <h.. $;q }I' ..·,}w

x det of complement.

It readily follows using the usual definition of determinants that

where C is the sum of the coefficients over all paths where ha + }b ~ m + 1
for all L ha , ib in the path. Since

L(P -I+ 1, , P) = CtB1[(m+lj- (p+q)],

q-I+ 1, , q

as is easily calculated [see Eq. (29)] we see it contains the lowest power
of B of any L(hl ' .. " hw ) W~ l.

}l, ···,}w '

The terms multiplying L(~::.;tL:~) in the expansion of ([IN consist of
two determinants. The first is

A ~ - 1, T - I whose first (J - 1 rows are those of A, and whose last
q - 1 rows are the first q - I rows of B,

and

A ~.v whose first (p -I) columns are the first (p -I) columns of
E, and whose last u columns are those of K.
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If cPm(~::::::~Z»O and you remove xj and vj for some j, it follows from
V<X<V all i, that cP (XI"""'J~l'~+I,,,,,XN»O. Hence since both

I I I + m m v I, ... , v) - 1, vi + 1•... , vN

Ar-I,r- 1 and AV'V are obtained from cP (Xl, ..., XN) by deleting corresponding12m Vl, ...• VN

rows and columns, neither is zero. Further since Vu ~ vr - 1 < a~ a + e=
Xu, u = (J, (J + 1, .., r - 1, it follows that A ~ - I,r - I is not zero even for e = O.
Thus the lemma is extablished. I

LEMMA 6. Assume in D, with all m i even, that F(x*, x) has a zero of
order q at Xk = a + e, and that it has a knot at vf= a of multiplicity p, with
overlap I where m + I> p + q I~ 1. Then limdo bf,nJ-l = 00 [see (23)].

Proof Using the notation of Definition 1 and Lemma 5

(where ui signifies the term U i does not appear)

Let Vi be the N tuple

~~~
(VI' ... , VI' ... , Vf' ... , Vf' ... , VS' ... , vs' V)

rearranged in increasing order with V between the last viand the first vj + I'

Then

f-I f"i+1 (X- X-) Sf"'+l (X- X-)L . cPm I'''''. N dv- L . cPm I'''''. N dv

b
i~O 11, V, i~f 11, V,

f nJ-I = ± - -
. cPm(~I""'~N)

VI' ... , vN

We note that p decreases by 1 in all terms in the numerator, while I
decreases by 1 in the first sum, but not in the second. (If p = I, the term
J~+ I cPm (XI, u/N

) dv has p decreasing by 1 and I decreasing by 1; but
cPm(Xi' u/N

) = 0 for V> a + e, and hence this term is negligible compared to
the term f - 1 in the first series.) Thus we can assert that
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L~':-J a/(e) e(l-I)[(m+I)-(p+q)] - L;~fb/(e) el[(m+l+ 1)- (p+q)]
bf, nl-l = c(e) e'[(m+I)-(p+q)]

=f~l a/(e) e-[(m+l) -(p+q)] _ i bi(e) el
/~O c(e) i~f c(e)

with
a/(e)a/+l(e)~O,

b/(e)b/+l(e)~O,

af -dO);60
c(O);6 0.

Thus the conclusion follows. I

i=I··f-2
i=f-oos-l

(b)

LEMMA 7. Assume in D, with all m/ even, that F(x*, x) has a zero of
order q = mk at Xk = a + e, and that it has a knot at vf = a of multiplicity
p = nf , with overlap I ~ 1 where m + 1= p + q. Keeping all other zeros fixed,
and setting F(e, x): = F(x*, x) and

Q(e)=rF(e, x) dx
o

we have for sufficiently small positive e:

o~~e) < 0.

Hence F(e, x) is not a minimizing sequence.

Proof We will show the following, for e >°
(a) ~ of(x*, x) I = 0,

dx J OXk X~Xk

dmk -
1

of(x* X)! dmk I
d

mk-! 0 ' =(-l)d mkF(X*,x) . =-Fmk;60;
x x k x ~ Xk X x ~ <k

of(x*, x) ~ 0, x < Xk

oXk ~o, X>Xk;

iJF(x*,x)_ s n,-1 m-l-j
(c) If iJXk -/~Oj~oCij(x-vJ+ cij= O(e) Fmk ifi<f

The conclusion follows from (a), (b), and (c). To establish this we set
iJF(x*, x)/iJxk = Fmk H(e, x). Then H(e, x) is continuous in e, and H(O, x) is
well defined. Further by (c) HkH(O,x)dx=O, and by (a) and (b)
S~k H(O, x) dx < 0, since H(O, x) ~°and by (a) it is not identically zero.



OPTIMAL L I PROBLEM 187

We now prove (a), (b), and (c). (a) follows as in [3, Eqs. (7) and (10)]
when we note of(x*, X)jOXk is a polynomial between the knots. Further
Fmk =I°by Lemma 1. To prove (b):

Let

uf(x) =f~oc KJ(x, y) u;(y) dy

1
KJ(x, y)= Gexp[ -(x- y)2j4<5].

2y n<5

We say uf (x) is uJx) smoothed. For <5 > 0, uf is an ETP system. Hence

(
J J J)U ~I""'~N' UN+ I

J *) XI'···'XN, XF (x ,x = J J

U(~l> ...,~N)
XI, ""XN

satisfies the assumptions of [2]. In particular

oF
J * { ~ 0, x < X k

;;- (x , x) ° a.e. in [0, 1].
UXk ~,X>Xk

For y =I a, we have limb LO uJ (y) = uj(y); limno(djdy) uJ (y) = (djdy) uj(y)
for all} so limbLO(oFJjoxd(x*, x) --+ (oFjoxd(x*, x) for Xk =la, x=la. Thus
assertion (b) follows.

To prove (c):
Set F(x*,X)=UN+I(X)+L~~lb;(xdu;(x). In D we find we can solve

for b;(xk ) by using the set of equations

}=o, .. , m/-l, 1= 1, ... , r+ 1.

(26)

By differentiating (26) with respect to Xb we obtain the set of equations

l=k,}=mk- 1,

otherwise
(27)

and can use the solution to describe (in D)

We claim that at e= 0, obdjoXk = °for d < r + (p -I).

640/59/2-5
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This follows because if we call the column on the right side of (27),
- Fmk Y, the only non-zero term in Y is Ya_ I + q= 1. Further the answer is
proportional to Fmk. To find the proportionality factor we set Fmk = -1. If
(at e = 0) we solve for obdloxk by Cramer's rule then Y is the dth column
of the numerator. Subtracting it from the p -I + 1 column of
L (Lq,p-l+l = 1) will result in that column L being identically zero, Thus
if we evaluate the numerator, as we did the determinant in the proof of
Lemma 5 we find it is zero, Since vT- 1 <vT=vr=a, (c) follows. I

We now discuss the case where there are q zeros at X k = a - e, p knots
at vr=a. xa+i =a-e,i=0, ...,q-1; vT+ i =a,j=0,1, ...,p-1. (See
Fig. 2.) Assume p + q ~ m + 1. Then there exists a q2 such that
p + q2 = m + 1, q~ q2; otherwise we are in D, even for e = 0.

LEMMA 8. Under the above circumstances, there is a q I such that

(a) 0"-1+m+ql=r-1+p,

(b) q~ ql ~ 1,

(c) P~ql'

(d) ql~(q-q2)+1 orq2~q3 with q3=(q-qd+1.

Proof Xa+q=al~a; hence va+q+m>a=O"+q+m>r-l+p. On
the other hand

Combining these two inequalities we find

(0" -1) + m + (q - q2) + 1~ r - 1+ p ~ 0" - 1+ m + q.

Thus if ql is defined by (a), (b) and (d) follow.
For (c), note vT_I=a2<a,xa=a-e=va+m>a-e or O"+m>r-1.

Thus from (a) p= [(0"-1 +m)-r+ 1] +ql ~ql'
Note that at e = 0, this implies vg + m = xg , g = 0" + j, j = 0, ..., ql - 1,

which is similar to an overlap, when Xk = a + e, vf =a. So in this case we
also call q I the overlap at e = 0.

l~q1 ~I ( m )

(
- - ~ (- - I-E q~EI- - J)(1.···.)(1'i )(1.···.)(O'-1. a - •.... a- • )(O'+q•.................... )(1'i

Vi.··· .liN = li1•····························· .li'f -1- a•....a. li'f + p•...•liN
l"'p~1

~qrj

FIG. 2. Overlap q I at e = O.
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In the present case, we wish to prove, analogously:

189

LEMMA 11. Assume in D that F(x*, x) has a zero of multiplicity q at
xk=a-e, and that it has a knot of multiplicity pat vf=a, with overlap ql
at e = 0. Keeping all other zeros fixed, then as a function of e

(
XI' ... , XN )ifJN= ifJm _ _ = aze Z + higher order terms,
VI' ... , V N

z=ql(m-p-q3+ 1)

= ql ((m + ql) - (p + q»

(Z ~°is clear from Fig. 2).

To prove Lemma 11, we need some preparatory lemmas.

LEMMA 9. Using the notation of Lemmas 8 and 11, set 1'/j = Xb in row
a-I + j of ifJ N,j= 1, ..., q, and consider ifJ N a function of 1'/1' ..., 1'/q.

Set

Now replace every term (xk-a)~ that appears in Dr1.ifJ N by Zi, each such
term by a different Zi' Let g be the number of such z;'s. Consider Dr1.ifJN as
afunction ofxk and the Zi' Thus Dr1.ifJN= Dr1.ifJ N(Xb ZI, ... , Zg). Finally define

Then

(1) DPDr1.ifJ N(a, 1)=0 if IPI <ql'

(2) limxk~a- Dr1.ifJN=Dr1.ifJN(a,O)=O if g<ql'

Proof We consider assertion (2) first. Set Zi = 1 - b. Then
G(b):=Dr1.ifJN(a,zl, ...,zg)=Dr1.ifJN(a,l-b, ...,I-b) is a polynomial of
degree g in b. By Taylor's theorem

Thus assertion (2) will follow if we prove assertion (1). To prove asser­
tion (1) first note Dr1.ifJN(a, 1) = 0.

This follows first from the remark that if you replace (Xk - vJ~ =
(matifJ N)",<1+ql+j by (x-v i)mj (j=O, ...,m-l), then these m functions
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span 1r m . Hence if Z i = 1, i = 1 ... g, then subtracting suitable multiples of
columns (J + ql + j (j = 0, ..., m - 1) from columns 1, .., (J + (ql -1) results
in the latter columns for an rows ;:: (J being zero. Thus the determinant is
zero by Laplace's expansion using the first (J columns.

If we take one derivative, e.g., (iJ/iJzj)D"cf>N(a, ZI, ... , Zg) and restrict our­
selves to the first (J + (q 1 - 1) - 1 columns and all rows ;:: (J we can show
as above that (iJ/8z i ) Dacf>N(a, 1)=0. Similarly we can take up to ql-l
derivatives to establish our result. (Clearly if any f3 i > 1, D f3e/Ja( a, b) = 0,
since each Z i appears only to the first power). I

Let M be the q 1 X q 1 subdeterminant of e/J N' formed from rows
(J-l+i,i=q3, ...,q, and columns r-l+(p-q)+j,j=q3, ... ,q. (See
Fig. 3.) Then

and e/J N _ ql is the complementary subdeterminant to M in e/J N' Then since

a-1 m

a-1

q

i t
q2 -1

q3 -1

L
~ l'-- M q1

~

I( I+- q1~
't"-1~ ~p~

FIG. 3. Upper portion of Mat "''I'
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with

(XI' , XN-qJ = (XI' , X,,+q3- 2 ' X,,+q, ..., XN)

(VI' , VN-ql)= (VI> , V(r+pl-(ql+lj, Vr+p, ..., VN)

it is easily verified that

Hence

Note that if we set Xk - a = x for X k > a, then M = W where

191

(28)

. (Xm-p-q3+]+(q-q3) xm- p- q3 +] )
W = WronskIan , ..., ------

[m-p-q3+1+(q-q3)]! (m-p-q3+ 1)!

= z ((m - p - q3: 1+ (q - q3»!' ..., (m - p ~ q3 + I)!) 0
x 1 1 "# ,

(m - p - q3 + I)!' ..., (m - p - q + I)!

z=qdm-p-q3+I), (29)

since for x> 0 these functions form an ETP system. We will use this fact
later.

From Lemma 9, we ask ourselves what is the minimal number of times,
call it Z, that we must differentiate l/J N so that there are q] terms of the form
(xk - a)~ in different rows and columns. Since M contains the rows and
columns of (xk - a)~ to the lowest powers j, we see that one way to
accomplish this is to differentiate each of the qI rows occurring in
M, (m- P-q3 + 1) times. Hence z=ql (m - P-q3 + I) =Z.

LEMMA 10. Using the notation of Lemmas 8, 9, and 11, if

q

L IY. i =z=q](m-p-q3+ I )
i=l

then

lim D~l/J=(-I)F D~Ml/JN_ql
Xk --i' a-

(30)
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with both sides zero unless IX I = IX 2= ... = IX q3 - 1 = 0 and

Proof Clearly if we differentiate rows or columns not contained in M,
to get terms of the form (Xk - a)~ would require more than z derivatives
to get q I such terms. Hence if there are derivatives on the left side of (30)
involving rows (J + i, i = 0, ..., q3 - 1, there will not be qJ terms of the form
(Xk - a)~ on the left side, so by Lemma 9 they are zero. Also since z is
minimal D~M will not contain q I ones and hence both sides will be zero.
Similarly if the left side of (29) has a (x k - a)~ term in columns
r + j, j = 0, ..., (p - ql - 1), both sides of (30) will be zero.

Thus we may restrict to the case where all terms (x k - a)~ occur in rows
and columns assigned to M. Once again if there are not q1 of them in
different rows and columns both sides of (30) are zero.

So finally we are left with the case where all terms of the form (x k - a)~

occur in rows and columns of M and D~M= ± 1, with IX 1 = ... = IX q3 _ 1 = O.
Proceeding as in Lemma 9, set Z i = 1 - <5

lim D~epN=D~epN(a,O)=G(I)
xk ....... a-

= f (-.~)j I (IX) D{3D~epN(a, 1)
j~O J. If3I=j f3

which by Lemma 9, becomes

a a= (- 1)ql -;- ... -;- D~epN(a, 1, ..., 1)
UZJ uZ q

= (_I)F D~MepN_ql'

The last equality follows since (ojozd'" (ojOZq,) D~ep(a, 1, ...,1) is just the
determinant obtained by eliminating the row and column where Z J occurs,
the row and column where Z2 occurs, etc., i.e., the cofactor of M, with
proper sign.

Finally we are ready to prove Lemma 11.

Proof of Lemma 11. Setting 1'fj = (a - e), j = 1, ..., q, in rows (J - 1+ j of
epN we have
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Hence (dh/dEh)(/JN(O)=O for h<z=z by Lemma 9 and the minimal
property of zwhich implies that if h < z, then the number of distinct z/s is
<ql' Also

d
Z

, l1J(0) = (- ~ Y L (z) D a l1J
dE· Z. lal ~z !Y.

=(-~Y L (_I)F(Z) DaM(/JN_q,
z. lal ~z !Y.

dZW
= (- 1( dx Z l1J N - q .

Thus the lemma follows from (28) and (29). I

(by Lemma 10)

For the case Xk < a, Lemma 11 is the analogue of Lemma 5 for Xk> a.
For X k < a, lemmas analogous to Lemmas 6 and 7 for the case X k > a may
now easily be established. Thus Theorem l' is proven.

Proof of Theorem 2'. Theorem 2' follows from an improvement
theorem, namely Q(x*) will get smaller if you pull zeros apart in a proper
way. We proved a corresponding result for Extended Totally Positive
Kernels in [2, Theorem 1].

Let x* = (XI' , xr)ED be the zeros of F(x*, x) with Xi a zero of multi-
plicity mh i = 1, , r. To avoid some cumbersome notation we will once
again restrict ourselves to the situation where the m j are even and where
two zeros come together in D, say Xk and Xk + I' and they both converge
to the point a. It is possible that a is a knot also. If the sum of the multi­
plicities of the zeros and of the knot at a is less than m - 2, our analysis
in [2] can be applied to show that Q(x*) will not assume its minimum
when Xk + 1= Xk = a. To treat the general situation when the sum of the
multiplicities of the zeros and the knot is less than or equal to m, we rely
on Lemmas 12, 13, 14, and 15. Once again, the general situation can be
treated by obvious extensions of our method.

Assume Xk = a is a zero of multiplicity q and vf= a is a knot of multi­
plicity p of F with p + q ~ m. Let X<7+ j= X b i =0, ... , q - 1. Then X"' with
if = (J + q - 1 is the "last" X k zero.

In Lemmas 12, 13, 14, and 15 we treat the case p + q = m. Then
u,,(x) = (/J;:'(x, vf- d, p = nf-I' The proof for p +q < m proceeds III a
similar manner.

LEMMA 12. In the following, assume all m j even, all Xj fixed except Xk,
and assume the notation of the paragraph above, p + q = m. Define
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with aN +' signifying that the term UN +, does not appear, etc., and

Then
N

(la) F, = ua(x) + L h;(xk) u;(x)
i=1
i#a

N

(2a) F2 = L c;(x) u;(x)
;=,
i #- 0-

(2b)

j=o, , m,-l,

j=O, , m k -2,

j=mk- 1,

1=1= k
l=k

I=k

1=1= k
I=k

l=k

Proof The powers of (xk-a)~/j! that appear in N, and Dj arej?';2.
Those that appear in N 2 and D 2 are j?'; 1. Furthermore the powers of
(x-a)j+/j! that appear in (dmk/dxmk )Fdxbx) and (dmk-'/dxmk -')
F2 (X b X) arej?';2.

Hence is clear from the definition of F, (x b x) that (la) is satisfied and
so are the first two lines of (1 b ).

Set H(x) = L~= 1 liUi(X), and assume H(x) satisfies:

d
j

I-.H(x) =0,
dx J X~XI

j=o, ...., m,-l, 1= 1, ..., k.

Then solving for the Ij by Cramer's rule, it would follow since we are in D,
that all Ii = 0. Thus, we establish that line 3 of (1 b) is also true.

If we smooth F2 , with all m i even, it follows that F~(xk> x) ?'; 0. (See
Lemma 7.) Since F~(Xb x) approaches F2 (Xb x) uniformly as <510 it
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follows that FZ(XbX)~O, and hence the first line of (2c) is established.
Statement (2b) and the second line of (2c) follow by the reasoning of
Remark 1 of [3].

LEMMA 13. In D

(a) If F3(X)=L:~~1d;u;(x) satisfies (lb) of Lemma 12, then

F3(x) = c1Fdx);

(b) If F4(x)=L:~~lllu;(x),mk even satisfies (2b) of Lemma 12, with

then F4(x)=czFz(x)+C3Fl(X), cz<O.

Proof (a) By the proper choice of C I

hence since we are in D, the reasoning we used in Lemma 12 shows

F3(x) = c1Fdx).

(b) By (2c) of Lemma 12, there is a Cz < 0 such that

LEMMA 14. Assume all m; even. Keeping all x j fixed, except Xb define

Let Q(xd be minimized at Xk = a. Then

( Fda,x)dx=O.

(31)
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We can solve by Cramer's rule, when X k #- a (see Lemma 7), to find

l=k, j=mk-l

otherwise.

Thus by Lemma 13,

(32)

with

(33 )

(C(Xk) is chosen to make the coefficient of ua(x) on both sides of (32)
match.)

Note that FI(Xb x) is continuous in Xk'

Combining (33) with the statement that F has a zero at Xk of order mb
we obtain from the convention for counting zeros that

sgn ( lim C(xd) = sgn ( lim Fmk)
Xk _a+ :q-a+

=sgn( lim Fmk)=sgn( lim C(x k )).
Xk - a- Xk - a-

Finally, since Q(a) is a minimum

I· oQ I' II1m -;- = 1m C(xd Fdxb x) dx ~ 0
Xk- a + UXk Xk- a + 0

We conclude nF I (a, x) dx = O. I
We now discuss the case of a knot of multiplicity p, and a zero Xk of

multiplicity q, both at point a. We break the zero X k into two zeros of mul­
tiplicity ql at SI = a - rt l B, and of multiplicity q2 at S2 = a + rt 2 B, ql + q2 = q

(all even). Further we set

(34)

and consider the case p + q = m. (If p + q < m, the analysis is simpler.)
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LEMMA 15. Use the notation in the paragraph above. Keeping all x;fixed
except 51 and S2' let F(e, x) be the corresponding F, and let

Q(e) = ( F(e, x) dx.

Then

oQ(e)1 =0
oe £=0

o2Q(e)1 0
2 < .

oe £=0

Hence Q(O) is not a minimum.

Proof With

we write F in the form

i=O, , ql-l

i= ql' , q-l

(35)

(36)

By taking divided differences of corresponding terms in both N 3 and D 3 we
can assume the ith row of N 3 is of the form

= {u;(x Il, u;(xIl, ..., u7'k- I(Xk - I),

u;[I, 0], u;[2, 0], ... , u;[q;, q2 -1], u;[ql' q2], u;(xk +Il, ..., u;(x)},

where

g h

u;[g,h]=u;[~ ~]

(the (g + h - 1)th order divided difference) and similarly for the rows
of D 3 •

From now on we represent N 3 in terms of its three most important rows
and columns. Thus:

U;[ql,q2]

(x-a)";.-p+l[ql' q2]

(x-a)";.-P[ql' q2]

u;(x) ]
(x-a)";.-p+1 .

(x-a)";.-P
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where A, B, C, E are >0. In particular (see Schumaker [11, Eq.4.39])

Ce 2= (x-a)'~-P[ql' q2-1]

'2 dq - 2

=f Bq-2(X) d q-2 (x-a)'~-Pdx
'1 X

Therefore

= (m-p)! f'2 Bq-2(x)(x-a)~ dx
2!(m-p-3)! '1

< m - p f'2 Bq- 2(X)(X - a)2 dx
2!(m-p-3)! 51

= (l/2)(q, rd + q2Gt~) e2. (37)

lim N 3 =
£10

uj-2(a)

(q - 2)!

o

o

uj-l(a)

(q - I)!

o

o

Ui(x)

(38 )

Since d/de= -a,(%sd+a2(%s2)' (d/de)uj[g,h]= -ga,u j[g+l,h]+
ha2uj[g, h + 1]; in particular, lime Lo(d/de) uj[q" q2] = (uj(a)/q!)(q2Gt2­
q, a, ) = O. Hence, we find

uj-2(a)
0 uj(x)

(q - 2)!
. dN3 0 0 (x-a)'~-P+' (39)hm-=

eLO de

0 E (x-a)':-P
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o

2C

uj-l(a)

(q - I)!

o

o

(x-a)':-p+l

(x-a)':'-P

0
uq - 1(a)

u;(x)
(q - I)!

+ 0 0 (x-a)':-p+l

2a2E 0 (x-ar;.-p

uj-2(a) (ql af + q2aD uj+ l(a)
u;(x)

(q-2)! (q + I)!

+ 0 2B (x -a)':- p+ 1

o o (x-a)':-P

Since the first two determinants only differ in one column, we can "add
them" to obtain

uj(a) uj-l(a)
Ui(X)

q! (q - I)!

r d
2
N 3 2 2 0 0 (x-a)':-p+l1m --;{2= (ql a l +q2 a2)

dO I:

2C+2Ea2 0 (x-a):-P
qlaf+q2a~

+

uj-2(a)

(q-2)!

o

o

u'!+ l(a)
(~+1)! (qlaf+(q2a~)

2B

o

(x-a):-p+l
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where,

(a) ::jA2(X)lx=a =0,

(b) ::jAdX)lx~a=0,

d
q

-

2

I
(c) dxq-2 A1(x) x~a

BARRAR AND LOEB

}=0···q-2

}=0···q-3

ur(a) ur-I(a)
ur- 2(a)

q! (q - 1)!

=(qt ai+q2 an 0 0 0 <0.

2C+ 2Ea2
0 0

ql ai + q2a~

(40)

To verify (c) first let F(Xb x) = N(xb x)/D(xd be the F with the same
zeros and knots as F(B, x) except at Xk where F(xb x) has q zeros. Next
note that the determinant in (40) is obviously an affine function of
K = (2C + 2E(2)/(ql ai + q2an. We denote the affine function by A(K).

Since we are in D, using the zero count convention we find

. d
q

_ I -. d
q

- I
A(1) = - }~+ dxqN(Xb x) X=Xk = -D(a) x}~~+ dxqF(xb x) X=Xk < 0

d
q

_ I - d
q

- I
A(O) = - x}~- dxq N(Xb x) X~.'k = -D(a) x}~- dxqF(Xb x) X~Xk > O.

Thus by (37) A(2Cj(ql ai + q2aD) < 0, and hence the determinant may be
assumed to be negative, establishing (c). Since

dF _ D 3(dN3/dB) - N 3(dD 3/dB)
dB - D~

we see by (38) and (39) that dF/dB satisfies (lb) of Lemma 12. Hence
dF/dB=cIF1(a, x) by Lemma 13, and thus (35) follows from Lemma 14.
Since

d 2F _ D 3(d 2N 3/dB2) - N 3(d 2D 3/dB2)
dB 2 - D~

2(dD3/dB)(D 3(dN3/dB) - N 3(dD 3/dB))

D~
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it follows by (38), (39), and (40) that d 2F/df,2 satisfies part (b) of
Lemma 13; hence, d 2F/df,2 = C2F2(X) +c3 F I (x), C2<0. Thus by part (2c) of
Lemma 12 and Lemma 14, (36) follows. I
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